
Allosteric Binders of ACE2 Are Promising Anti-SARS-CoV‑2 Agents
Joshua E. Hochuli,∥ Sankalp Jain,∥ Cleber Melo-Filho, Zoe L. Sessions, Tesia Bobrowski, Jun Choe,
Johnny Zheng, Richard Eastman, Daniel C. Talley, Ganesha Rai, Anton Simeonov, Alexander Tropsha,*
Eugene N. Muratov,* Bolormaa Baljinnyam,* and Alexey V. Zakharov*

Cite This: https://doi.org/10.1021/acsptsci.2c00049 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The COVID-19 pandemic has had enormous health,
economic, and social consequences. Vaccines have been successful
in reducing rates of infection and hospitalization, but there is still a
need for acute treatment of the disease. We investigate whether
compounds that bind the human angiotensin-converting enzyme 2
(ACE2) protein can decrease SARS-CoV-2 replication without
impacting ACE2’s natural enzymatic function. Initial screening of a
diversity library resulted in hit compounds active in an ACE2-
binding assay, which showed little inhibition of ACE2 enzymatic
activity (116 actives, success rate ∼4%), suggesting they were
allosteric binders. Subsequent application of in silico techniques
boosted success rates to ∼14% and resulted in 73 novel confirmed
ACE2 binders with Kd values as low as 6 nM. A subsequent SARS-CoV-2 assay revealed that five of these compounds inhibit the
viral life cycle in human cells. Further effort is required to completely elucidate the antiviral mechanism of these ACE2-binders, but
they present a valuable starting point for both the development of acute treatments for COVID-19 and research into the host-
directed therapy.
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The radical consequences of coronavirus disease 2019
(COVID-19) and the virus that causes it, severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), since its
advent in late 2019, are evident in many facets of daily life. Since
that time, many economies around the world have entered
recessions, unemployment rates have dramatically increased,
and the healthcare infrastructure in many countries is being
pushed to its limits.1−3 More significantly, COVID-19 has killed
almost 6 million people worldwide and has infected well over
400 million as of February 2022.4

Vaccine deployment has been a general success in reducing
rates of infection5 and especially rates of hospitalization,5,6

though less so in viral transmission from a vaccinated
individual.7 Importantly, there are breakthrough cases where
vaccinated individuals contract the virus, which can still result in
severe symptoms or death. Variants of the virus are actively
developing and spreading;8 future viral mutants could evade the
immune system detection established by a previous infection or
vaccine. The tremendous effort the scientific community has
dedicated to developing a vaccine is incredibly important and
has truly altered the treatment landscape; however, future
research into new and novel therapies for acute COVID-19 to
alleviate the severity of infection is still required.
It is imperative that efforts be dedicated to the development of

small-molecule inhibitors which target various parts of the viral
life cycle, by direct action upon either viral proteins or host

factors required for viral replication. These therapies would not
only be immediately applicable to COVID-19 but also be useful
in any future coronavirus epidemics.9 There are currently several
repurposed drugs granted emergency use authorization for the
treatment of COVID-19. Remdesivir, a nucleoside analogue that
inhibits SARS-CoV-2 RNA polymerase II, has taken a premier
role in treatment since early 2020. Other drugs that are currently
being used to treat COVID-19 cases are the rheumatoid arthritis
drug baricitinib and the corticosteroid dexamethasone, which
act to reduce the inflammation associated with severe
infection.10 There are also at least two newly approved drugs
for treatment of COVID-19: Paxlovid11 andMolnupiravir,12 but
true efficacy in practice remains to be seen.
The National Center for Advancing Translational Sciences

(NCATS) has put forth a significant effort to support and
promote the development of anti-SARS-CoV-2 treatments. The
NCATS OpenData Portal for COVID-19 drug repurposing13

allows researchers and public health officials to expedite the
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development of SARS-CoV-2 interventions through open data
sharing and analysis tools and also to prioritize antiviral
discovery for further development in treating COVID-19.
Furthermore, a number of researchers have been performing
large-scale virtual screening (VS) of NCATS in-house
compound libraries with the aim of identifying chemotypes
with antiviral activity and limited host cell cytotoxicity.14,15

Various high-throughput screening (HTS) assays have been
developed to expedite the process.16−18

Although many small-molecule therapies for COVID-19 have
been identified which target viral proteins, there is interest in
discovering small-molecule modulators of host proteins integral
to the SARS-CoV-2 life cycle. Drugs targeting the host cell
machinery reduce the chance of viral resistance development
and also have the potential to be applied to other viruses/
indications which harness or utilize the same host targets.19 One
such protein of particular interest serves as the primary entry
receptor for SARS-CoV-2, angiotensin-converting enzyme 2
(ACE2).20

ACE and ACE2 are key enzymes in the renin-angiotensin-
aldosterone system (RAAS), which is implicated in renal,
pulmonary, immune, and cardiovascular functions.21−23 Angio-
tensin I is cleaved into angiotensin II (Ang II) by ACE, and
ACE2 is responsible for the conversion of angiotensin II to
Ang1−7.24−27 Ang1−7 mediates vasodilatory, vasoprotective,
anti-fibrotic, and anti-inflammatory effects through its binding
to the G-protein coupled receptor Mas. Reduction of
angiotensin II levels and the subsequent elevation of Ang1−7
by ACE2 enzymatic activity exerts beneficial actions not only on
the heart and lungs but also on the brain, gastrointestinal system,
and bone marrow.24,25

Due to the complex role of the RAAS system, inhibition of
ACE2 enzymatic activity will lead to increased inflammation,
fibrosis, oxidative stress, and vasoconstriction.25 ACE2
enzymatic inhibition, via either the SARS-CoV-2 spike protein
interaction or small-molecule orthosteric binding,26 results in
downstream reduction of Ang1−7; this hinders anti-inflamma-
tory compensation as well as allows for the over production and
expression of Ang II, inciting further inflammation and fibrosis.
As such, inhibition of the SARS-CoV-2 spike protein interaction
with ACE2, without impacting ACE2 enzymatic activity, should
be the goal for29 COVID-19 therapeutic intervention.27

Harnessing and properly utilizing computational tools28,29

have enabled many research groups to identify potential
COVID-19 therapeutics, as well as to prevent the binding of
SARS-CoV-2 to ACE2.30 In some cases, molecular modeling has
been used to virtually screen compounds31 and also to predict
synergistic treatment32 that may aid in the treatment of COVID-
19. We report here a hybrid discovery approach, where
computational models are used in conjunction with high-
throughput screening to establish a vast dataset of small
molecules with desired binding properties (Figure 1).
The aims of this study are (i) to identify allosteric binders of

ACE2 without enzyme inhibitory activity and (ii) to discover
small molecules which allosterically bind ACE2 and are also
active against SARS-CoV-2 in cell-based assays. To do so, we
utilized assays for ACE2 binding and enzymatic activity to
screen a large dataset of small molecules and also to develop
initial data for in silico modeling. Independent modeling efforts
were undertaken by both NCATS and University of North
Carolina (UNC) teams to nominate a diverse set of molecules
predicted to bind to ACE2 without significant interruption of
enzymatic activity. Computationally nominated compounds

were experimentally screened, resulting in 73 actives (out of 512
nominations; hit rate∼14%). Confirmed hits were subsequently
screened in a SARS-CoV-2 replication assay in human cells.
Appropriate counterscreens for cytotoxicity and luciferase assay
interference were applied to all hits.
In total, five allosteric ACE2 binders with Kd ranging from

0.09 to 3 μM (inactive as ACE2 inhibitors) were identified as
SARS-CoV-2 inhibitors with IC50 values ranging from 14 to 25
μM. Further efforts are required to elucidate the mechanism of
action as SARS-CoV-2 inhibitors; however, hit compounds will
serve as useful starting points for additional investigation via
structure−activity relationship studies and medicinal chemistry
optimization.

■ RESULTS AND DISCUSSION
Initial Screening.To identify small-molecule ACE2 binders

which do not interfere with ACE2 enzymatic activity, we utilized
microscale thermophoresis (MST) in combination with an
enzymatic assay. Extended assay descriptions are included in the
Supporting Information.
Recombinant polyhistidine-tagged (His-tag) extracellular

domain of ACE2 and the fluorogenic substrate MCA [(7-
methoxycoumarin-4-acetic acid)Ala-Pro-Lys (Dnp)-OH]

Figure 1. Overall study design.
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was used for the enzymatic assay. For MST, the recombinant
ACE2 protein was labeled with a His-tag-specific fluorophore to
monitor any binding events. MLN-4760, a known ACE2
inhibitor, was used to test and optimize the conditions of the
enzymatic and MST assays. In the enzymatic assay, MLN-4760
showed a dose-dependent inhibition of ACE2 activity with a
half-maximum inhibitory concentration (IC50) of 1.50 nM
(Figure S1A). The binding affinity of MLN-4760 to ACE2
measured by MST was 702 nM (Figure S1B). Consequently,
MLN-4760 was used as a positive control in both assays to
screen the compounds of the NCATS Pharmaceutical
Collection and the anti-infective library.
A total of 3149 compounds were screened in the ACE2

enzymatic assay in a five-point dilution series with final
compound concentrations ranging from 20 nM to 62 μM in
1536-well-plate format. The Z′-factor for the assay had an
average value of 0.72 ± 0.04 and a signal-to-background ratio of
13.82 ± 2.73, indicating a robust assay performance.
Compounds which showed ACE2 enzyme-modulating activity
in the primary screen were cherry-picked and retested in a 11-
point dilution series ranging from 0.4 nM to 123.5 μM in
duplicates. These compounds were tested in a counterscreen to
check whether they interfere with the reporter fluorophore
signal as well. Out of the 128 cherry-picked compounds, 112

compounds were confirmed, where 110 of them were inhibitors
of the ACE2 enzyme and two activators.
The same small-molecule libraries were screened for ACE2

binding by MST in 96-capillary format at a single dose with final
concentrations ranging from 39 to 392 μM depending on the
highest available concentration of the compounds in the library
(based on solubility). Out of the 492 compounds (14.36%,
Figure S1C) identified as potential hits, 405 unique compounds
were selected for the affinity screening at seven-point dilution
series. The compounds were counterscreened with a fluoro-
phore-labeled His-peptide to identify compounds interacting
with the His-tag of the recombinant ACE2, instead of the target
protein. The hit compounds identified from the affinity screen
with dissociation constant (Kd) values less than 30 μM and not
active in the ACE2 enzymatic assay were retested in a second
round of the MST experiment. 116 compounds were validated
as ACE2 putative allosteric binders.

Virtual Screening. UNC Modeling. Model validation
statistics is reported in Table S2. Models in bold were selected
for final predictive use as a consensus ensemble. According to
standard metrics,33 model performance was fairly poor (correct
classification rates close to 0.5). However, we placed emphasis
on the positive predictive value (PPV), which reflects the
likelihood that any nominatedmolecule will be truly active in the
experimental screening. We sought an increase in PPV over the

Figure 2.Computational workflow. (a) Curation protocol. UNC curation protocol34−36 shown and NCATS protocol is similar with minor deviations.
(b) Modeling workflow. In total, three model types were used to screen compounds to produce 512 nominations for further experimental validation.
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selection strategy for the initial screening set (3.7% active rate).
Our consensus model performance predicted about a three fold
increase in the rate of active compounds from less than four to
slightly more than 10%. Compounds predicted as active by the
highest number of models within the ensemble were selected for
experimental validation.
NCATS Modeling. Detailed model statistics on the training

set and the test set are provided in Table S3. All four models
were selected for a final consensus ensemble, which showed
AUC of ca. 65%. For the ligand-based pharmacophore (LBP)
modeling, we used the 110 active compounds; clustering based
on pharmacophore-based similarity (cluster distances of 0.4, 0.6,
0.7, and 0.8), followed by generation of 89 pharmacophore
hypotheses: merged-feature pharmacophore (MFP) and shared-
feature pharmacophore (SFP). Taking the computational
constraints into account, 24 pharmacophore models that hit
the majority (>20%) of active versus inactive were selected for
VS (Table S1). In general, the pharmacophoric sites such as
hydrogen bond acceptor, hydrogen bond donor ,and aromatic
ring were prudently characterized. The complete collection of
138,729 compounds was virtually screened by both stratified
bagging (SB) and LBP consensus models. Out of 256
compounds selected for experimental evaluation, 58 compounds
were selected by both SB and LBP models, 58 compounds were
picked using the SB approach, and remaining 140 compounds
were selected from our LBP models (Figure 2).
Postmodeling Screening and Follow-Up Experiments.

As described above, computational models were used to
nominate a total of 512 compounds for experimental testing.
Within the top 256 compounds, chosen from each institute,
there were overlapping 11 compounds. Thus, we added
additional 11 compounds from the UNC list. Then, all the
molecules were tested for ACE2 binding by MST at a single
concentration. Out of the 512 compounds, 130 (25.39%) were
identified as binders and nineas inconclusive (Figure 3). Next,

these 139 potential hit compounds were measured by MST in
dose−response at seven-point dilution series for ACE2 binding
and in His-peptide counterscreen to test the binding specificity.
These compounds were tested in the ACE2 enzymatic assay as
well. Seventy five compounds were identified as ACE2 binders

with Kd values ranging from 6 nM to 562 μM, where only two of
them had moderate enzyme inhibitory activity.
To determine whether putative allosteric binders of ACE2 can

affect SARS-CoV-2 infection, compounds with Kd below 10 μM
and showing no enzymatic inhibition were tested in the live
SARS-CoV-2 Fluc assay (seeMaterials andMethods for details).
The assay indirectly monitors the ability of compounds to
inhibit viral replication and infection through various molecular
mechanisms, including direct inhibition of viral entry or
enzymatic processes, as well as acting on host pathways that
modulate viral replication. The compounds were tested in the
corresponding counterscreens for cytotoxicity and luciferase
inhibitory activity.
Overall, five compounds showed a SARS-CoV-2-inhibiting

activity with an efficacy greater than 70% and half-maximal
inhibitory concentration (IC50) values of 14−25 μM (Table 1).
Of these compounds, only compound 1 showed a cytotoxic
effect with IC50 = 24.8 μM (Figure S2A), and compounds 3 and
5 had moderate luciferase-inhibiting activity (Figure S2B). The
remaining compounds were inactive in the counterscreens and
can be considered as true SARS-CoV-2 inhibitors. All five
compounds were run through the ADMETlab37 and PASS
Online38 web tools to predict various properties, which are
reported in Tables S4 and S5, respectively.
Docking studies have been extensively employed in modern

pharmaceutical sciences due to their ability to predict the
conformation of small-molecule ligands interacting with the
target-binding site. In order to understand the structural basis for
allosteric inhibition, we docked our most potent ligand
(NCGC00138760-01, Kd = 0.092) into three putative allosteric
binding sites. The docking score (Glide XP score) for the three
proposed binding sites led to the following results: allosteric site
1 (−5.691) < allosteric site 2 (−4.719) < allosteric site 3
(−3.898). Thus, allosteric binding site 1 is more preferred in
comparison to sites 2 and 3.
As it can be seen in Figure 4, compound NCGC00138760-01

fits well in the hydrophobic binding pocket 1, showing H-bond
interaction with ILE291, aromatic interaction with ILE29, ALA
431, ASP 367, and ASN 290, and pi-cation integration with
LYS441. Further evidence could be derived from binding affinity
score predictions obtained from LigandScout 4.4,39,40 which
provided a score of −25.86 for allosteric binding site 1 versus
−14.63 and −22.85 for allosteric binding sites 2 and 3,
respectively. The proposed biding hypothesis can be further
used to explore the structure−activity relationships of
discovered chemotypes.
We used an MST assay (to measure binding to ACE2) and an

enzymatic assay (to assess ACE2 activity) to discover putative
allosteric binders of ACE2; it was presumed that a compound
that shows strong binding to ACE2 with little to no inhibition of
enzymatic activity is binding allosterically. Using the results of
the initial binding and enzymatic activity assays (3,246
compounds), we developed QSAR models which were used to
nominate a set of 512 virtual hits. Experimental validation of
these compounds demonstrated that ca. 14% of them were
allosteric ACE2 binders. This was a significant enrichment of hit
rate over the prevalence of allosteric binders in the original assay,
which was closer to 4%. All confirmed allosteric ACE2 binders
are reported in Table S6. Interestingly, several ACE2-binding
chemotypes were identified with >3 structural analogues
included in the dataset as active. These hit chemotypes could
serve as leads for additional investigation, where allosteric
binding of ACE2 may be of interest.

Figure 3. Experimental testing of the predicted molecules for ACE2
binding byMST at a single dose. Out of the tested 512 compounds, 130
(25.39%) were identified as hits, 360 as nonbinders, and 9 inconclusive.
Twelve compounds were auto-fluorescent, and one compound caused
aggregation.
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This set of compounds, along with hits from the original assay,
were then subjected to a further experimental analysis to assess
potential anti-SARS-CoV-2 activity. Thus, an assay for viral
replication of a modified SARS-CoV-2 virus in human cells over-
expressing ACE2 was applied to the set of allosteric ACE2
binders, along with appropriate counterscreens to rule out assay

artifacts. In total, five hit compounds reported here have
significant binding to ACE2, no inhibition of ACE2 enzymatic
activity, and significantly reduce SARS-CoV-2 replication in
human cells. Thus, it is hypothesized that these compounds
inhibit viral replication via ACE2 binding, thus preventing viral
entry into the host cell. Further efforts are required to verify this

Table 1. Compounds with the Capability to Bind to ACE2 and Inhibit SARS-CoV-2

aACE2-binding affinity (Kd ± standard error) measured by MST. bIC50: half-maximal inhibitory concentration values obtained in the SARS-CoV-2
Fluc assay, measured in triplicate. cEfficacy: maximum inhibitory effect observed in the SARS-CoV-2 Fluc assay.

Figure 4. Surface model showing docking pose NCGC00138760-01 in the allosteric binding site 1 along with its interacting residues.
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mechanism of action. To the best of our knowledge, this is the
first successful attempt to discover antiviral agents against SARS-
CoV-2 via ACE2 allosteric binding mechanism and we
encourage further exploration of these hits for use in treatment
of COVID-19.

■ MATERIALS AND METHODS
Experimental Section. MST Assay. Binding of the

compounds to recombinant human ACE2 (Sino Biological,
Cat #: 10108-H08H) was evaluated by MST. His-tagged ACE2
was labeled with RED-tris-NTA 2nd generation dye (Nano-
temper Technologies, Cat #: MO-L018) following manufac-
turer’s protocol and diluted in MST buffer (10 mM HEPES pH
7.4, 150 mM NaCl, 10 mM CaCl2, 0.01% Tween 20) to a final
concentration of 3 nM. For the single-dose screen, 200 nL of
library compounds were predispensed into the assay plate using
Echo 650 series acoustic dispenser (Labcyte Inc.), mixed with 10
μL of labeled protein, and incubated for 15 min at room
temperature (RT). For dose−response experiments, 100 nL of
compounds in twofold dilution series were transferred to a 384-
well compound plate (Greiner, Cat #: 784201-1B). MST traces
were collected using Monolith NT.Automated (Nanotemper
Technologies) unit and standard treated capillary chip (Nano-
temper Technologies, Cat #: MO AK002) with the following
setting: 45% excitation power, medium MST power and MST
periods of 3 s/10 s/1 s. Kd values were calculated by fitting the
change in normalized fluorescence signal of the thermograph
using MO.Affinity analysis software.
To identify false-positive binders, which could interact with

the fluorophore-labeled His-tag instead of the target protein, all
compounds tested in the dose−response experiments with
ACE2 were counterscreened with poly-histidine control peptide
(Nanotemper Technologies) under the same experimental
conditions as with ACE2.
ACE2 Enzymatic Assay. ACE2 enzyme activity was

monitored in a fluorometric assay. Briefly, 25 nL of compounds
were transferred to the 1536-well assay plate (Greiner, solid
black medium-binding plates) using an Echo 650 (Labcyte Inc.)
acoustic dispenser. 3 μL/well of 0.27 nM ACE2 (0.2 nM final
concentration) suspension in assay buffer (PBS, pH 7.4, 0.01%
Tween-20) was dispensed into an assay plate with Aurora
Discovery BioRAPTR Dispenser (FRD; Beckton Dickenson)
and incubated 15 min at RT. One μL/well of 60 μM ACE2
substrate MCAAla-Pro-Lys (Dnp)-OH (AnaSpec, Cat #: AS-
60757) was then added. The substrate has the fluorophoreMCA
(7-methoxycoumarin-4-acetic acid) and Lys (Dnp, a dinitro-
phenyl linked lysine) as a quencher and exhibits almost no
fluorescence. ACE2 can recognize the site between Pro and Lys
(Dnp) and cleave off the quencher, resulting in an increase of the
fluorescence intensity. The plate was then centrifuged at 1000
rpm for 15 s, and the fluorescence was detected with the
PHERAstar plate reader (BMG LABTECH) equipped with
Module 340/440 at t1 = 0 min and t2 = 15 min at RT. Data was
normalized to enzyme activity in the presence of dimethyl
sulfoxide (DMSO), set as 0%, and in the presence of 6.2 μM
MLN-4760, set as −100% inhibition. The resulting percent of
inhibition data was fitted to a sigmoidal dose−response curve
using the four-parameter Hill equation as described pre-
viously.41

Live SARS-CoV-2 Fluc Assay and Cytotoxicity Counter-
screen. A live SARS-CoV-2 replication assay in A549-ACE2
host cells was used to measure the ability of compounds to
perturb the replication of SARS-CoV-2. It employs an

engineered SARS-CoV-2 WA-1 lineage virus that has an
integrated firefly luciferase reporter (Fluc, provided by Pei-
Yong Shi, UTMB) and A549-ACE2 cells (generously provided
by Pei-Yong Shi, UTMB), an adenocarcinoma human alveolar
basal epithelial cell line stably overexpressing human ACE2.
Briefly, 20 nL/well of compounds in DMSOwere spotted into

1536-well assay plates (Aurora E8, black clear bottom, tissue
culture-treated plates) by acoustic dispensing. In parallel, 20 nL
of DMSOwas added to the first four columns of the plate, which
serve as the no virus and neutral control wells. 4 μL of A549-
ACE2 cell suspension (4 × 105 cells/mL) was dispensed to all
wells for a final density of 1,600 cells/well in Dulbecco’s
modified Eagle’s medium (DMEM) with 2% fetal bovine serum
(FBS). In addition, 1 μL of media (DMEM, 2% FBS) was
dispensed to columns 1 and 2. Thereafter, 1 μl/well of SARS-
CoV-2 (USA_WA1/2020) at multiplicity of infection of 0.2
suspended in media was dispensed to columns 3−48. This
results in a DMSO final concentration of 0.4%. Assay plates were
incubated for 48 h at 37 °C, 5% CO2, and 90% humidity. After
incubation, 2 μL/well of One-Glo (Promega, Cat # E6120)
detection reagent was added, and plates were incubated for 5
min at RT. Luminescence signal was measured on a BMG
PHERAStar plate reader.
Raw data was normalized to the neutral control (cells infected

with virus in the presence of DMSO, set as 0%) and positive
control (cells without virus added, set as −100%) for each plate.
The resulting percent of inhibition data was fitted to a sigmoidal
dose−response curve using the four-parameter Hill equation.
In parallel, the compounds were tested in a cytotoxicity

counterscreen against the A549-ACE2 cell line. The assay was
set up in the same way as in the Fluc assay omitting the addition
of virus. A549-ACE2 with DMSO solvent served as the negative
control, whereas media and DMSO (no cells) were the positive
control. The plates were incubated for 48 h at 37 °C, and one
volume of CellTiter-Glo assay reagent (Promega,Madison,WI),
which assesses viable cells (ATP content), was added using a
BioRAPTR FRD (Beckman Coulter, Brea, CA). Cell viability
was measured using a ViewLux μHTS Microplate Imager
(PerkinElmer, Waltham, MA). The obtained luminescence
signal was normalized against negative control (0% response)
and positive control (−100% response).

Firefly Luciferase Counterscreen. To identify false-positive
hits, which could reduce the Fluc signal due to the inhibition of
the luciferase enzyme rather than perturbing the viral infection,
compounds were tested in a biochemical assay with recombinant
luciferase from Photinus pyralis (firefly). Briefly, 25 nL/well
compounds or DMSO as vehicle control (columns 1−4) was
acoustically transferred to a white solid 1536-well plate (Greiner,
Cat #: 789175-F). 3 μL/well of 13.33 nM luciferase (10 nM final
concentration) suspension in 50 mMTris-acetate buffer, pH 7.6
was dispensed into the assay plate with Aurora Discovery
BioRAPTR Dispenser (FRD; Beckton Dickenson) and
incubated 15 min at RT. 3 μL/well of buffer only was dispensed
to columns 3−4 as no enzyme control. One μL/well of 40 μM
D-luciferin in substrate buffer (50 mM Tris-acetate, pH 7.6, 10
mM Mg-acetate, 10 μM ATP, 0.01% Tween-20, 0.05% BSA)
was then added. The plate was centrifuged at 1000 rpm for 15 s,
and the luminescence was detected with the PHERAstar plate
reader (BMG Labtech). Data was normalized to enzyme activity
in the presence of DMSO, set as 0%, and no enzyme control, set
as −100% inhibition. The resulting percent of inhibition data
was fitted to a sigmoidal dose−response curve using the four-
parameter Hill equation.
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Computational Details. Data Curation. All chemical
structures and correspondent activity information were analyzed
and prepared according to data curation protocols proposed by
Fourches et al.34−36 In summary, specific chemotypes were
normalized and explicit hydrogens were added. If present,
polymers, salts, organometallic compounds, and mixtures were
removed. Furthermore, we performed the analysis and exclusion
of duplicates. The following criteria were applied for exclusion of
duplicates: (i) if the reported activity of the duplicates was the
same (i.e., in concordance), only one entry was kept in the
dataset; (ii) if duplicates presented discordance in biological
activity, both entries were excluded. 1 compound with
ambiguous activity data was removed. In total, 163 compounds
were removed in the curation process, six of which were actives.
Molecular Descriptors. UNC Protocol. Descriptors were

chosen to cover a reasonable amount of descriptor types (whole-
molecule descriptors, fragment descriptors, and topological
descriptors) while maximizing ease-of-use. A total of seven
different descriptors were generated for the dataset. Six of these
(RDKit whole-molecule descriptors, Morgan fingerprint,
Hashed Atom-Pair Fingerprint, Hashed Topological Torsion
Fingerprint, and MACCS keys) were generated using the
RDKit42 Python package.
The seventh descriptor type, simplex representation of

molecular structures (SiRMS), was calculated using the Hit
QSAR software.43 At the 2D level, the connectivity of atoms in a
simplex, the atom type, and bond nature (single, double, triple,
and aromatic) were considered.44 Bonded and nonbonded 2D
simplexes were used. In addition to element and atom type,
physicochemical characteristics of atoms, such as partial charge,
lipophilicity, refraction, and the atom’s ability to be a hydrogen-
bond donor/acceptor, were used for atom differentiation in the
simplexes. For the atom characteristics with real values (charge,
lipophilicity, and refraction), a binning procedure was used to
define discrete groups: (i) partial charge A ≤ −0.05 < B ≤ 0 < C
≤ 0.05 <D, (ii) lipophilicityA≤−0.5 <B≤ 0 <C≤ 0.5 <D, and
(iii) refraction A≤ 1.5 < B≤ 3 < C≤ 8 <D. For hydrogen-bond
characteristics, the atoms were also divided into three groups: A
(acceptor of hydrogen in H-bond); D (donor of hydrogen in H-
bond); and I (indifferent atom, i.e., atom that does not form H-
bonds).45

NCATS Protocol. We employed three different sets of
descriptors: physicochemical descriptors (RDKit), Morgan
fingerprints (1024 bits), and Avalon fingerprints (1024 bits),
calculated using the RDKit toolkit.42 As consensus modeling
approaches have been reported to outperform simple QSAR
models,46−50 we also performed the consensus of descriptors
(RDKit, Morgan, and Avalon).
Model Building. UNC QSAR Protocol. The models were

developed using best practices as described in Cherkasov et al.51

Model types employed were gradient boosting implemented in
scikit-learn,52 a simple neural network implemented in
PyTorch,53 and the Multiple Descriptor Read-Across54

(MuDRA) model developed by some of the authors of this
work. For models not based on decision trees, the descriptor
matrix was normalized to prevent undesired weighting of certain
descriptor dimensions. Descriptor dimensions with low variance
(less than 0.0001) were eliminated due to being noninformative.
Models were generated for most architecture-descriptor pairs.
TheMuDRA algorithm requires multiple descriptor spaces, so it
was handled differently than the rest. The four descriptor types
used for the MuDRA model were the Morgan fingerprint,

Hashed Atom-Pair Fingerprint, Hashed Topological Torsion
Fingerprint, and MACCS keys.

NCATS QSAR Protocol. In order to overcome the problem of
data imbalance, we used bagging with stratified under-
sampling.55 This method has proven to be among the best-
performing methods for dealing with imbalanced datasets.56 SB
is a machine-learning technique that is based on an ensemble of
models developed using multiple training datasets sampled from
the original training set. It uses minority-class samples to create
the training set of positive samples using a traditional bagging
approach (resampling with replacement) and after that
randomly selects the same number of samples from the majority
class. Thus, the total bagging training set size was double the
number of the minority-class molecules. Several models are then
built and predictions averaged in order to produce a final
ensemble model output. Because of random sampling, about
37% of the molecules are not selected and left out in each run.
These samples create the “out-of-the-bag” sets, which are used
for testing the performance of the final model.56 Although a
small set of samples are selected each time, the majority of
molecules contributed to the overall bagging procedure since the
datasets were generated randomly. Random forest (with default
parameters) was used as a base-classifier. The number of trees
was arbitrarily set to 100 (default) since it has been shown that
the optimal number of trees is usually 64−128, while further
increasing the number of trees does not necessarily improve the
model’s performance.

Pharmacophore-Based Modeling. In addition to QSAR, we
also performed LBP modeling. A pharmacophore describes the
spatial arrangement of essential interactions of a drug with its
respective receptor-binding site. It is a well-established method
VS in the early drug discovery process. In this study, the
generation of LBP models, their subsequent refinement, and VS
were performed with LigandScout 4.4 Advanced, available by
Inte:Ligand GmbH. The conformational libraries for both
pharmacophore modeling and the VS process were created with
i:Con57 (max. 200 conformations per compound), a conformer
generator implemented in LigandScout.
To design the LBP models, the actives (from the training set)

were clustered based on pharmacophore-based similarity
(cluster distances 0.4, 0.6, 0.7, and 0.8, respectively). For each
of the clusters obtained from different cluster distance
thresholds, MFP and SFP models were generated that
incorporate the features of selected compounds per cluster.58

A good pharmacophore model should not only be able to
estimate the activity of active compounds but also have the
ability to identify the active molecules from a database
containing a large number of inactive compounds. To select
the best models for screening, we applied these models on our
complete dataset (training and test set combined) and
calculated the percentage of active and inactive that hit these
pharmacophore models. The models that hit 20% more active
compounds versus inactive compounds were selected for the
final VS. The screening was performed using iscreen module,
with default settings with the maximum number of omitted
features set to 2.

Model Validation. UNC Protocol. Models were evaluated
using five-fold external cross-validation. The dataset was split
randomly into five partitions. Each model was trained on four of
the five partitions and tested on the fifth. This process was
repeated five times so each partition was used once as a test set.
Reported model statistics are an average of performance across
each test set.
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NCATS Protocol. From each class, 80% of the data was
randomly selected and used as a training set. The remaining 20%
of compounds were considered as the external validation set. For
stratified bagging, since multiple training datasets were
generated by selecting the molecules with replacement from
the training set in a random fashion, this leaves out about 37% of
the instances in each run. Therefore, these molecules that
constitute the “out-of-the-bag” sets are later used for testing the
performance of the final model.
Molecular Docking. To investigate the possible binding

mode for the confirmed allosteric binders, we took the most
potent ligand (NCGC00138760-01, Kd = 0.092 μM) and
performed molecular docking in the three proposed allosteric
binding sites.59 The crystal structure of ACE2 (PDB ID: 6M0J,
resolution = 2.5 Å)60 was retrieved from Protein Data Bank
database and was prepared for docking using the Protein
Preparation Wizard of the Schrödinger Suite (2021).61 During
the protein preparation, hydrogen atoms were added, water
molecules were removed, and optimal protonation states and
ASN/GLN/HIS flips were determined.
The three allosteric binding sites were defined as proposed by

Dutta,59 taking 20 Å around respective resides (Figure 5). The

LigPrep module of Schrödinger Suite62 was used to generate the
correct protonation states for the ligand, which were then used
for the docking studies. The OPLS4 force field63 was applied for
the minimization of the structures and different ionization states
were generated by adding or removing protons from the ligand
at a target pH of 7.0 ± 2.0 using EPIK version 3.1.64,65

Tautomers were also generated for each ligand. For generation
of stereoisomers, the information on chirality from the input file
for each ligand was retained as is during the entire calculation.
Docking was performed using the GlideXP scoring func-
tion61,66,67 implemented in Maestro (ver. 12.9).
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